
Uncertainty and Capacities in Finance

Monotone Set Functions and the Choquet Integral

Alexander von Felbert*

Munich, May 2019

Abstract

This review article provides an introduction to monotone set functions and Cho-
quet integrals. A monotone set function, also known as capacity, extends the
classical measure theory by restricting to monotonicity instead of requiring (σ-)
additivity. The generalization of classical measures is motivated by the uncertainty
and human behavior present in �nance. Important concepts such as modularity,
generalized distribution and survival functions as well as distorted probabilities are
explained and put into context. After studying capacities, we introduce Choquet
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1 Introduction

There are some things that you know to be true, and others that you know to be

false; yet, despite this extensive knowledge that you have, there remain many things

whose truth or falsity is not known to you. We say that you are uncertain about

them. You are uncertain, to varying degrees, about everything in the future; much

of the past is hidden from you; and there is a lot of the present about which you do

not have full information. Uncertainty is everywhere and you cannot escape from

it. � Dennis Lindley. Understanding Uncertainty (2006).

Banks, insurance companies and other �nancial institutions are accustomed to taking certain
�nancial risks and generating pro�t from it. These risks are (in the best case) quanti�able
and can therefore be limited and steered based on objective information. Financial institutions
are, however, also exposed to risks, that cannot be reasonable measured or guessed. In such
situations only subjective perception remains. Typical examples are so-called non-�nancial
risks such as political, compliance, conduct or legal risk. Appartently, the term 'risk' is loosely
used in �nancial practice since quanti�able and non-quanti�able risks can entail far-reaching
and crucial di�erences. F. H. Knight �rst distinguished in 1921 between 'risk' and 'uncer-
tainty' in his seminal book [Kni09]. On the one hand, Knightian or complete uncertainty may
be characterized as the complete absence of information or knowledge about a situation or an
outcome of an event. Knightian risk, on the other hand, may be characterized as a situation,
where the true information on the probability distribution is available. In practice, no para-
meter or distribution can be known for sure a priori. Hence, we �nd it preferable to think
about degrees of uncertainty.1 Both terms, risk and uncertainty, are obviously not rigorously2

de�ned, however, it serves as an orientation, motivation and starting point for the survey below.

Quanti�able risks can be modeled using a probability space (Ω,A,P), where Ω is the sample
space, A a non-empty collection of all possible events3, and P a probability measure. The
frequentist's interpretation of the probability P(A) of an event A ∈ A is indicated by the limit4

of its relative frequency in a large number of trials. For Bayesians, the concept of probability
is interpreted as a degree of belief or con�dence, representing a state of knowledge or a quan-
ti�cation of a personal belief, about a statement. Both approaches assume additivity. Please
also refer to [Sha81], for instance, for more details on the additivity in the Bayesian approach.

Most individuals prefer decision making, where more information is available to decisions with
less available information. More information actually means a lower degree of uncertainty, while
less information implies a higher degree of uncertainty. The following paradox suggests that the
so-called uncertainty or ambiguity aversion cannot be expressed through an additive model.5

That is, an additive (probability) measure might not be suitable to represent situations where
high uncertainty and human behavior is involved.

1Also refer to, for instance,[Tal15] and [Fin17]
2For instance, it is not clear a priori what 'objective' actually means. In addition, please note that
even empirical information or knowledge is subject to uncertainty.

3This collection might be a σ-algebra or the power set depending on Ω
4The term 'limit' here is not a mathematical limit as outlined in [Lin08]. The axiomatic approach
avoids the di�culties, and the empirical observation will not be used to de�ne probability, but only
to suggest the axioms.

5Refer to section 5.3.3 in [Gra16]
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1.1 Example (Ellsberg Paradox, see [Ell61] and [FS04]): A person is shown two urns, A and
B. Each of them containing 10 balls of red or black color. Urn A contains 5 black and 5 red
balls, while there is no additional information about urn B. That is, all balls in urn B could
be black or red or any combination in between. One ball is drawn at random from each urn.
The person is o�ered to make a bet on color of the ball chosen from either urn. Winning a bet
the person receives, say, 1000 EUR. Possible bets are, for example, 'the ball drawn from urn A
is black' denoted by Ab, 'the ball drawn from urn A is red' denoted by Ar, and, similarly Bb
and Br. Let us assume that the person can pick one option for each of the following four bets:

(i) Bet on Ar, Ab or indi�erent;

(ii) Bet on Br, Bb or indi�erent;

(iii) Bet on Ar, Br or indi�erent;

(iv) Bet on Ab, Bb or indi�erent.

We denote the corresponding probabilities of an occurrence of Ar and Ab by pAr and pAb,
respectively. A similar notation is used for the occurrence of Br and Bb. The probabilities
of pAr and pAb as well as pBr and pBb both each add up to one given the additivity of the model.

It has been observed empirically that most subjects prefer any bet on urn A to a bet on urn
B. The decision that most subjects make with respect to the four bets is usually indi�erent for
(i) and (ii), Ar for (iii) and Ab for (iv).

From the empirically suggested choice for bet (iii) of drawing a red ball in urn B, we infer
pBr < pAr. Similarly, bet (iv) implies pBb < pAb ⇔ 1 − pBr < 1 − pAr ⇔ pBr > pAr and thus a
contradiction. Please also refer to Example 2.75 in Foellmer & Schied [FS04].

Going beyond the classical measure theory might be required in a human-centered model when
the degree of uncertainty increases towards complete uncertainty as shown in Ellsberg's Para-
dox. For instance, when probabilities cannot be assigned to all events in A, particularly, when
only little information or scarce data is available. But even if a su�cient data basis is available,
there are many sources of uncertainty such as experimental, parameter, algorithmic, interpol-
ation or model uncertainty. Compensating the lack of objective empirical information by, for
instance, subjective expert judgments can be fruitful and is quite common in �nance. However,
then it might become inevitable to extend the classical measure theory.

A capacity extends a classical measure by requiring monotonicity of a set function instead of
additivity. It can therefore capture a higher degree of uncertainty, which can make the contra-
diction of the Ellsberg paradox disappear.6

Given the diversity of applications it is not surprising that there are many �elds of research in
di�erent independent domains such as measure theory, theory of aggregation functions, decision
theory, arti�cial intelligence and discrete mathematics (e.g. game theory and combinatorial op-
timization). [FS04] provides an introduction to �nancial stochastic models in discrete time. In
addition, the interconnections to di�erent types of risk measures (coherent, convex, etc.) are
derived. [Gra16] focuses more on game-theoretic aspects but provides a good introduction to

6Refer to Example 2.77 in [FS04] or section 5.3.4 in [Gra16]
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capacities and Choquet integrals. [WK09] provides a measure-theoretic introduction to di�er-
ent types of capacities.

In this note, we provide an introduction to capacities and Choquet integrals. In the next section
2, we provide some useful notation and basic facts. Capacities, modularity of capacities as well
as generalized distribution functions are introduced and studied in section 3. Section 4 contains
a short outline of the Choquet integral.

2 Prerequisites

Before we actually start with de�ning what a capacity is, it is convenient to introduce and
extend certain notations as we need to consider higher-dimensional generalized distribution
functions, for instance.

Let N denote the natural numbers, R the real numbers, R+ the set of non-negative real numbers,
and R− the set of non-positive real numbers. If A is a subset of Ω, then AC ∶= Ω ∖ A is the
complement set. Further, in this note let n ∈ N be a positive integer.

2.1 De�nition: 1) Ω denotes the non-empty sample space or basic set, whereby Ω might
be �nite, countable or an uncountable set;

2) A is a non-empty family of subsets of Ω. If A is equipped with some mathematical
structure, such as ring, algebra, σ-ring, σ-algebra and the like, it is explicitly mentioned;

3) The pair (Ω,A) is called, in general, space. If A is a σ-algebra, then (Ω,A) is called
measurable space. In general, probability measures are denoted by P;

4) 2Ω is the power set of Ω, i.e., 2Ω ∶= {A∣A ⊆ Ω};

5) A n-interval is the Cartesian product of n real intervals and a n-box is a closed n-interval;

6) The unit n-cube [0,1]n is the n-box denoted by [0,1]n = [(0, . . . ,0), (1, . . . ,1)];

7) Let R ∶= R ∪ {∞,−∞} = [−∞,∞] and Rn ∶= R × . . . ×R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

. We extend the natural order of

the reals through −∞ < x < ∞ for all x ∈ R using the following conventions. For all x ∈ R
we de�ne

x + (±∞) = (±∞) + x = (±∞) + (±∞) = ±∞.

Moreover,

x ⋅ (±∞) = (±∞) ⋅ x =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

±∞ for x > 0

0 for x = 0

∓∞ for x < 0

and x
±∞ = 0. Last, we set (±∞) ⋅ (±∞) = +∞, (±∞) ⋅ (∓∞) = −∞, 1

0 ∶= +∞. Thereby we

have extended the total order to R. However, the operations

(±∞) − (±∞)

are unde�ned since they do not make any sense in this context.
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The extended addition and multiplication on R are commutative and associative, but the struc-
ture of R together with the extended operations is not an algebraic �eld anymore. In addition,
we set inf(∅) = ∞ = sup(R), inf(R) = −∞ = sup(∅). Those conventions will become important
when dealing with inverse functions.

2.2 De�nition: Let A1, . . . ,An be non-empty sets of R, F ∶ A1×. . .×An → R, and let B = [x, y]
be a n-box, where x = (x1, . . . , xn) < y = (y1, . . . , yn). Let further c = (c1, . . . , cn) ∈ B.

1) A vertex of a n-box B is a point c = (c1, . . . , cn) ∈ B, where ck equals either xk or yk
∀k ∈ {1, . . . , n}. That is, a vertex is one of the 'corner points' of the n-box;

2) If the vertices of B are all distinct (which is equivalent to saying x < y), then

sgnB(c) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if ck = xk for an even number of k's

−1 if ck = xk for an odd number of k's

If the vertices of B are not all distinct, then sgnB(c) = 0. The function sgn is called the
sign-function of B;

3) If B is a n-box, whose elements are all in the domain of F , then the F -volume of B is
de�ned as the sum

VF (B) ∶= ∑
c a vertex of B

[sgnB(c) ⋅ F (c)],

where the summation is taken over all vertices c = (c1, . . . , cn) of B;

4) The function F is called n-increasing if VF (B) ≥ 0 for all n-boxes, whose elements are in
the domain of F .

De�nitions 1) to 4) are still well-de�ned when extended to the more general n-intervals. For
instance, in [DS16], the same concepts are applied on left-half-open n-intervals.

For the 2-dimensional case, we obtain

VF ([(x1, x2), (y1, y2)]) = F (y1, y2) − F (x1, y2) − F (y1, x2) + F (x1, x2).

Please note that c = (y1, x2), for instance, contains only the element x2, and, thus an odd
number of elements of {x1, x2}. If n = 1, so that the domain of F is a subset of R, then F is
1-increasing if and only if F is non-decreasing. Distribution functions of probability spaces are
n-increasing.

The concept of n-increasing functions in a n-dimensional space is analogous to non-decreasing
functions in one dimension. A n-dimensional function is n-increasing, if the F -volume of any
n-box B in the domain of F is non-negative, i.e., their cumulative measure (or probability)
should be always grater or equal than zero.

2.3 De�nition: A set function on Ω is a mapping ξ ∶ A → R, assigning a real number to any
subset in A. A set function can be

1) Additive if ξ(A ⋅∪ B) = ξ(A) + ξ(B) for every disjoint A,B ∈ A;
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2) Sub-additive if ξ(A ⋅∪ B) ≤ ξ(A) + ξ(B) for every disjoint A,B ∈ A;

3) Super-additive if ξ(A ⋅∪ B) ≥ ξ(A) + ξ(B) for every disjoint A,B ∈ A;

4) Monotone if ξ(A) ≤ ξ(B) whenever A ⊆ B;

5) Grounded if ξ(∅) = 0;

6) Normalized if ξ(Ω) = 1;

7) Positive homogeneity if ξ(x ⋅A) = xξ(A);

8) Bounded if supA∈A∣ν(A)∣ < +∞.

Furthermore, let ∨ = sup denote the supremum and ∧ = inf denote the in�mum. A poset
L ∶= ⟨Ω;⊆⟩ is called lattice if there exists an in�mum and a supremum for every pair A,B ⊆ Ω.
Because of the required existence of in�mum and supremum and their uniqueness, the maps

∧ ∶ Ω ×Ω→ Ω (A,B) ↦ A ∧B ∶= inf{A,B}
∨ ∶ Ω ×Ω→ Ω (A,B) ↦ A ∨B ∶= sup{A,B}

are well-de�ned.

The Lebesgue measure on Ω, that is, a measure generated by L([a, b]) = b − a for [a, b] ⊆ Ω,
is denoted by L. The sign function sgn ∶ R → {0,±1} of a real number extracts the sign of its
argument. That is,

x↦ sgn(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if x < 0

0 if x = 0

1 if x > 0

.

A weight vector w with weights (w1, . . . ,wn) is a vector w ∈ Rn satisfying ∑ni=1wi = 1 and wi ≥ 0
for all i = 1,2, . . . , n.

For a more detailed treatment of probability theory, we refer to standard literature such as
[Bil95] and [Lin08].
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3 Capacities

3.1 Basic De�nitions
Aside from too high uncertainty in human-centered systems, there are also other real-world
situations that cannot be adequately represented by an additive measure. Usually, the price of
a set of goods equals the sum of the prices of its elements. The case where a collection is worth
more than the single pieces is discussed in a) of the next example.

3.1 Example: a) Suppose there are two volumes x1 and x2 of a rare book.7 Let Ω ∶=
{x1, x2} stand for the entire collection and suppose that there is a secondhand bookseller
who buys the single volumes at the prices ν({x1}) and ν({x2}). If ν(Ω) symbolizes the
price of both volumes, then ν(Ω) > ν({x1}) + ν({x2}) as the entire collection is worth
more than sum of the single volumes. This type of capacity is called super-additive and
it is capable of expressing a bene�cial relation between sets in terms of the measured
property, which is in this example the price(s) of the books.

b) Consider a group A ⊆ Ω of �rms, usually called a coalition because it is supposed that
the individuals in A cooperate in some sense to achieve a common goal.8 The annual
pro�t µ(A) might be used to determine to which extend the group A has been able to
achieve its common objective. Correspondingly, a group ∅ with no members should yield
no pro�t at all, i.e. ν(∅) = 0. However, in a real-world situation monotonicity may be
violated if the collaboration is not bene�cial overall. If one �rm k is close to bankruptcy
one could have ν(A ∖ {k}) > ν(A).

Apparently, real-world situations require the use of set functions that, like (probability) meas-
ures, are monotone with respect to set inclusion, but, unlike (probability) measures, are not
additive, not even �nitely additive. A capacity generalizes the classical concept of measure
theory by dropping additivity and requiring monotonicity instead. The basic heuristic is as
follows: the larger the set we observe, the more con�dent we can -usually- be that an event of
interest is going to occur.

3.2 De�nition: A set function ν ∶ A → R+ on (Ω,A) is called a capacity, if it satis�es the
following two properties:

i) it is grounded, i.e. ν(∅) = 0;

ii) it is monotone, i.e. A,B ∈ A, A ⊆ B ⇒ ν(A) ≤ ν(B).
ν is called �nite or in�nite if ν(Ω) is �nite or in�nite, respectively. A capacity is called
normalized if ν(Ω) = 1.

Example 3.1 b) tells us that even the fairly general capacities do have their limitation to real-
world problems. However, capacities are capable of modeling a) of Example 3.1 appropriately.

The present De�nition 3.2 of a capacity deviates from Choquet's original since we strive to
keep the note as general as possible. Choquet provided several de�nitions of di�erent types of

7Example taken from [Gra16] and [Nar13]
8Example taken from [Gra16]
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capacities, which are all too restrictive for most of our purposes. That is, Choquet requires
certain types of continuity, see [Cho54], which we will only require when needed.

Generalizing the Bayesian approach to derive degrees of belief (priors) for statements leads us to
the so-called belief functions. This special class of normalized capacities is quite popular and
can be obtained thorough, for instance, Dempster's upper & lower probabilities ([Dem67],
[Dem68]), Matheron's & Kendall's random sets ([Ken74], [Mat74]) as well as Shafer's
evidence theory ([Sha76]). Whereas probability functions assume that mass is assigned to all
countable singletons x ∈ Ω and aggregated via the additivity property, belief functions allow
basic mass numbers to be assigned to subsets A ⊆ Ω, called focal element, without further
subdivision. That is, the belief (prior) allocated to focal elements A ∈ A is not further divided
into proper subsets B ∈ A, B ⊊ A. All non-focal elements B ∈ A will be assigned with zero
belief. The theory is well-explained in the seminal book [Sha76].

Please note that a capacity is de�ned on a family of sets A without having any speci�c math-
ematical structure. This changes, for instance, in section 3.4, where we de�ne the distribution
function associated with a capacity as continuity comes into the game.

An immediate consequence of the given de�nition is that a capacity ν is positive, i.e. ν(A) ≥ 0,
∀A ∈ A on a suitable (measurable) space (Ω,A). Let ∅ ∈ A, then the assertion 0 = ν(∅) ≤ ν(A)
follows since ∅ ⊂ A and ν is monotone.

3.3 Example: Let Ω = {1,2} represent the set of the two volumes as outlined in a) of Example
3.1. Further, let A = 2Ω and ν′ ∶ 2Ω → [0,∞) be de�ned by

∅ ↦ 0 {1} ↦ 500

{2} ↦ 750 Ω = {1,2} ↦ 1500.

This simple set function ν′ is a capacity since it is grounded and monotone as can be double-
checked manually. Be aware that ν′ is not additive as ν′({1,2}) > ν′({1})+ν′({2}), for instance.
Let us now consider the corresponding 'normalized' version ν ∶ 2Ω → [0,1] on ({1,2} de�ned by

ν(A) ∶= ν′(A) ⋅ 1

1500
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if A = {1,2}
1
3 if A = {1}
1
2 if A = {2}
0 if A = ∅

.

The set function ν is also non-additive, grounded, normalized and monotone as can be double-
checked manually. Hence, ν is a normalized capacity.

Some technical examples will help to understand capacities better.

3.4 Example: a) Let P be a class of probability measures on the measurable space (Ω,A).
ν+, ν− is de�ned as follows

ν+(A) ∶= supP∈PP(A), ν−(A) ∶= infP∈PP(A).
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Then ν+ and ν− are normalized capacities9, which follows from the de�nition of the
probability measures P ∈ P. P (∅) = 0 for all P ∈ P and thus ν+(∅) = ν−(∅) = 0. In a
similar manner, we can derive ν+(Ω) = ν−(Ω) = 1. Given that all probability measures
are monotone, we can furthermore infer that ν+ and ν− are.

b) If we extend the �nite counting measure via ∣A∣ ∶= ∞ for all in�nite A ∈ 2N, we receive
∣ ⋅ ∣ ∶ A → N that is still �nitely additive but also σ-additive.10 To see the σ-additivity
property consider a sequence (Ak) ∈ A with k ∈ N of pairwise disjoint sets, where each
Ak can either be �nite or in�nite. If (at least) one of the Ak is in�nite, say Ai, then

⋃k∈NAk ⊃ Ai is also in�nite, and

∑
k∈N

∣Ak∣ = ∑
k<i

∣Ai∣ + ∣Ai∣ +∑
k>i

∣Ak∣ = ∞ = ∣ ⋃
k∈N

Ak∣.

If in�nitely many of the disjoint Ak are non-empty, the union ⋃k∈NAk is also in�nite and

∑
k∈N

∣Ak∣ = ∑
k∈N,Ak≠∅

∣Ak∣ ≥ ∑
k∈N

1 = ∞ = ∣ ⋃
k∈N

Ak∣.

If only �nitely many Ak are non-empty and all Ak are �nite, the assertion follows from
the �nite additivity. Please refer also to the similar but di�erent Example 3.13.

c) Let ν be a capacity on the Borel measurable space (Rn,B(Rn)). Then, the k-th pro-

jection νk for a Borel set A ∈ B(Rn) with A = (A1, . . . ,Ak, . . . ,An) de�ned by

νk(A) ∶= ν(R × . . .R ×Ak ×R × . . . ×R)

is a capacity on (R,B(R)). Let A be a set with Ak = ∅, then νk(A) = ν(∅) = 0 since
the Cartesian product of any set with the empty set equals the empty set. If A is a set
with Ak = R, then νk(A) = ν(Rn) = 1. The monotonicity of νk follows directly from the
monotonicity of ν and its de�nition.

A (σ-)additive measure µ ∶ A → R does have the property that the range of the set function µ
can be fully derived from the values µ(x), x ∈ Ω provided that Ω is at most countable.11 That
is, requiring additivity for such a µ actually means to only model the single elements of the
basic set and deriving the measures of all other subsets by using additivity. This is, in general,
not possible for capacities. How to e�ectively assign the real numbers ν(A) to all events (also
called random sets12) A ∈ A of a capacity ν is a general problem since additivity cannot be
used anymore.

The need and the chance to assign real numbers not only to isolated elements but to all subsets
of Ω meet real-world requirements and o�ers great �exibility. Note that the number of subsets
increase exponentially as there are 2n subsets for a sample or outcome set Ω of size ∣Ω∣ = n. The
problem is even more complicated if we deal with in�nite sample sets. A couple of solutions have
been proposed to avoid combinatorial explosion or to create capacities from already existing
ones. A subjective selection can be found in the following list of de�nitions.

9Example taken from [Sca96]
10Please also refer to Example 2.2 in [Den94]
11Note that the Lebesgue measure of a single x ∈ Ω is zero
12Refer to [Mol12] and [Ngu06], for instance
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3.5 De�nition: Let ν be a capacity on a space (Ω,A).
1) Let Ω = {x1, . . . , xn} be �nite, λ > −1 a �xed real number and ν a capacity. We call ν a

Sugeno λ-measure if it complies with the so-called λ-rule

ν(A ∪B) = ν(A) + ν(B) + λ ⋅ ν(A)ν(B)(3.1)

for all disjoint A,B ⊆ Ω. The parameter λ can be derived by assigning real values to all
single outcomes {x1}, . . . ,{xn} and solving the following equation13

1 + λ =
n

∏
i=1

(1 + λν(xi)) ⇔ 0 = ∏
n
i=1 (1 + λν(xi)) − 1

λ
− 1.(3.2)

2) Let P be a probability measure on the measurable space (Ω,A) and h ∶ [0,1] → [0,1] be
an increasing function with h(0) = 0 and h(1) = 1. Then ν = h ○ P is a capacity.14 The
capacity ν = h ○ P is also called distorted probability and h the corresponding distortion

function.15

3) Let Ω = {x1, . . . , xn} be �nite and Bel ∶ 2Ω → [0,1] be a grounded and normalized set
function. If

Bel(A1 ∪ . . . ∪An) ≥ ∑
∅≠I⊆{1,...,n}

(−1)∣I ∣+1Bel(⋂
i∈I
Ai)(3.3)

for every collection of subsets A1, . . . ,An ⊆ Ω, then Bel is a belief function on Ω.16

4) Let A1 ⊂ A2 be two classes of subsets of a nonempty basic set Ω, and let ν1, ν2 be the
corresponding set functions de�ned on A1 and A2, respectively. The set function ν2 is
called an extension of ν1 from A1 to A2 if ν1(A) = ν2(A) for every A ∈ A1.

5) Given a capacity ν, the set function ν̃ de�ned by ν̃(A) ∶= ν(Ω)−ν(AC) is called the dual
capacity of ν. If A,B ∈ A with A ⊆ B, then AC ⊇ BC , and, thus ν̃(A) ≤ ν̃(B). The
feature ν̃(∅) = 0 can be inferred directly from the de�nition.

Regarding 1) of De�nition 3.5, the commonly admitted interpretation of the Sugeno measure
is as follows. If enough statistical evidence is available on the realization of A, λ would be set
to zero and thus ν would be a probability measure. That is, ν(A) = P(A) for all A ∈ A. If
not, it means that our knowledge on the experiment or statement is incomplete, and we lack
evidence on the realization of A. Hence, the amount of certainty (accumulated evidence) on

13Refer to Theorem 4.2 of [WK09] where it is shown�in an even more general way�that the solution of
equation (3.2) provides a suitable parameter λ

14To prove the assertion that a distortion is a capacity, let A,B ∈ A with A ⊆ B, then ν(A) = h(P (A)) ≤
h(P (B)) = ν(B) because h is increasing and P a probability measure. The set function is grounded
and normalized as ν(∅) = h(0) = 0 and ν(Ω) = h(1) = 1, respectively

15In the discrete case, i.e. ∣Ω∣ ∈ N, the transformation h ∶ [0,1] → [0,1] can also be seen as an importance
weighting vector.

16Belief functions can also be generated with so-called basic probability assignments m ∶ A → [0,1],
where m ful�lls ∑A⊆Ωm(A) = 1. Then Belm(A) = ∑B⊆Am(B) for all A,B ∈ A is a belief measure.
Note that the basic probability assignment m is a set and not a point function. We refer to chapter
2 of [Sha76] for further details.
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the realization of A = A1 ∪ . . .An (with Ai ∩Aj = ∅), quanti�ed by ν(A), should be less than
the probability P(A) = P(A1 ∪ . . . ∪An) of the event A.

Given the capacity ν ∶ A → R, we can extend ν from A to A′ via

B ↦ ν′(A′) ∶= supA⊆A′{ν(A)} ∀A′ ∈ A′ and A ∈ A.(3.4)

The extension ν′ via the supremum is also a capacity since monotonicity is ful�lled by de�ni-
tion and all other requirements are inherited. Note that ν′ is one of many possible extensions.
It is therefore reasonable to restrict the study to continuous extensions or extensions that
ful�ll other interesting additional structural requirements. For a more detailed treatment of ex-
tensions of capacities, we refer to chapter 5 of [WK09]. Also refer to c) of the next Example 3.6.

Dual capacities may be important when dealing with lattices of capacities with respect to the
set inclusion.17 Please note that we are going to use distorted probability measures for the
calculation of continuous Choquet integrals in section 4.

The next example applies Sugeno's λ-measure on a very small sample space and we also touch
upon the role of the corresponding lattice with respect to the set inclusion. In addition, we
study a quite simple extension using equation (3.4).

3.6 Example: Let Ω ∶= {x1, x2, x3} and A ∶= 2Ω, such that (Ω,A) is a measurable space. Let
further ν ∶ A → [0,1] be a capacity. The values ν(x1) = 0.2, ν(x2) = 0.2 and ν(x3) = 0.3 have
been estimated by experts. The values of the other lattice elements, sketched in Figure 1, are
either derived by using the Sugeno λ-measure or by using the extension formula (3.4).

a) First, we need to solve the equation 1+λ = (1+0.2⋅λ)(1+0.2⋅λ)(1+0.3⋅λ) considering that
λ > −1 according to equation (3.2). Second, the unique solution λ = 5

3 may be employed
to derive the values of the other subsets of Ω.

{x1, x2, x3}

{x1, x2} {x1, x3} {x2, x3}

{x1} {x2} {x3}

∅

Figure 1: Boolean lattice with eight elements

To this end, we apply formula (3.1) to calculate ν({x1, x2}) via
17Please refer, for instance, to [DP08]
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ν({x1} ∪ {x2}) = ν({x1}) + ν({x2}) +
5

3
⋅ ν({x1}) ⋅ ν({x2})

= 0.2 + 0.2 + (5

3
⋅ 0.2 ⋅ 0.2) = 7

15
.

Combining the disjoint sets {x1, x2} and {x3} yields the desired normalization for Ω:

ν({x1, x2} ∪ {x3}) = ν({x1, x2}) + ν({x3}) +
5

3
⋅ ν({x1, x2}) ⋅ ν({x3})

= 7

15
+ 0.3 + (5

3
⋅ 7

15
⋅ 0.3) = 1.

The set function values of {x1, x3} and {x2, x3} could be derived similarly. Both sets
result in a value of 3

5 .

b) The dual capacity ν̃(A) = ν(Ω) − ν(AC) = 1 − ν(AC) of a) can be determined by simple
arithmetic and the results in the last example a). By de�nition, ν̃(∅) = 1 − ν(∅C) =
1 − ν(Ω) = 0. Accordingly, we get ν̃({x1}) = 1 − ν({x2, x3}) = 1 − 3

5 = 2
5 , ν̃({x3}) =

1 − ν({x1, x2}) = 1 − 7
15 = 8

15 and ν̃({x1, x2}) = 1 − ν({x3}) = 1 − 0.3 = 0.7, for example.

c) The extension of ν from { {x1},{x2},{x3} } to A = 2Ω is quite straightforward using
equation (3.4), i.e. the extension via the supremum function. For instance, ν({x1, x2}) =
supA⊆{x1,x2}{ν(A)}, that is, ν({x1, x2}) = sup{ν(x1), ν(x2), ν(∅)} = 0.2. Analogously,
ν({x1, x3}) = ν({x2, x3}) = ν(Ω) = 0.3. Apparently, this type of �lling up the missing
values is more a technical exercise than a practical way to determine all values of a
capacity.

3.2 Modularity
The next de�nitions are important in the context of convex/concave sets and functions.

3.7 De�nition: A capacity ν on (Ω,A) is called
1) submodular if ν(A ∪B) + ν(A ∩B) ≤ ν(A) + ν(B) for all A,B ∈ A;

2) supermodular if ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B) for all A,B ∈ A;

3) modular if the capacity is sub- and supermodular, i.e. if ν(A∪B)+ν(A∩B) = ν(A)+ν(B)
for all A,B ∈ A.

Let (Ω,A) be a suitable non-empty space and µ ∶ A → R a set function. Modularity can be
achieved by setting

µ(A) ∶= µ(∅) + ∑
x∈A

µ({x}).(3.5)

If µ(∅) = 0 and µ({x}) for all x ∈ Ω are prescribed arbitrarily, then the set function de�ned by
(3.5) is additive and thus modular by design.

The following examples are going to illustrate some of the de�nitions made.
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3.8 Example: a) Any probability measure (Ω,A,P) yields an example of a modular capa-
city. The modularity of ν is obvious if the considered sets are disjoint since ν is additive.
If A1,A2 ∈ A intersect in a non-empty set A1 ∩ A2 ≠ ∅, as illustrated in Figure 3.8,
modularity can be seen by applying additivity to the disjoint sets A1 ∖A2, A2 ∖A1 and
(A1 ∩A2).

A1 A2

Figure 2: Venn diagram of two intersecting sets A1 and A2

b) Let Ω ∶= {v1, v2, v3, v4} be the matrix

A ∶=

v1 v2 v3 v4

⎛
⎜
⎝

1 2 4 0
1 3 5 0
0 1 1 0

⎞
⎟
⎠

on the �eld R of real numbers and A ∶= 2Ω. The rank function r ∶ A → N ⊆ R of the
sub-matrices de�nes a �nite and submodular capacity. If A1,A2 ∈ A with A1 ⊆ A2,
monotonicity r(A1) ≤ r(A2) follows since A2 comprises more column vectors as A1 and
has therefore at least the rank of A1. Finally, the sub-modularity of the rank function
follows directly from the well-known rank-nullity theorem. A more general proof that
the matroid rank function is submodular can be found in section 1.3 of [Oxl11].

c) It is common practice to reduce prices by granting a discount when many similar objects
are bought together. If Ω ∶= {x1, . . . , xn} represents a �nite set of n ∈ N similar objects
for sale, and ν represents the price set function on (Ω,2Ω), then ν is a (sub-)additive

measure. That is, ν(A ⋅∪ B) ≤ ν(A) + ν(B) for every disjoint A,B ∈ 2Ω. Let us further
assume that each single object x ∈ Ω costs without any discount one unit. The granted
discount depends on the relative number of objects which a counterparty agrees to buy.

Let us consider the linear function ν0(A = {x1, . . . , xm}) = ∣A∣ − ∣A∣
∣Ω∣ = m − m

n for A ∈ 2Ω,
where xi ≠ xj for all pairwise distinct xi, xj ∈ A. The measure ν0 is additive and thus

modular as can be double-checked using the identity ∣A ⋅∪ B∣ = ∣A∣ + ∣B∣.

If we de�ne ν1(A = {x1, . . . , xm}) = ∣A∣ − ( ∣A∣
∣Ω∣)

2
, which is a non-linear set function, ν1 is

a sub-additive measure. That is, ν1(A
⋅∪ B) < ν1(A) + ν1(B) for all A,B ∈ A.

Submodular (supermodular) capacities are also sub-additive (super-additive), but the converse
does not necessarily hold. We also refer to Examples 3.1 and 3.3, where examples of super-
additive capacities are given.
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3.9 De�nition: A capacity ν on (A,Ω) is called
1) n-monotone if for every k ∈ {2, . . . , n} and A1, . . . ,Ak ∈ A

ν (
k

⋃
i=1

Ai) ≥ ∑
∅≠I⊆{1,...,k}

(−1)∣I ∣+1ν (⋂
i∈I
Ai)(3.6)

where ∣I ∣ is the cardinality of I ∈ 2{1,...,k} ∖ ∅. We say that ν is 1-monotone if it is
monotone.

2) totally monotone if it is k-monotone for every integer k.

Be aware that for n = 2 and A1,A2 ∈ A the inequality (3.6) becomes ν(A1 ∪ A2) ≥ [ν(A1) +
ν(A2)] − ν(A1 ∩ A2). The n-monotone property is a generalization of the supermodularity,
which is on the other hand related to convex functions. Note the interconnection between n-
monotone capacities and belief functions, de�ned in 3) of De�nition 3.5. That is, every belief
function is totally monotone by de�nition.

The next lemma is going to be useful when continuous supermodular or submodular capacity
examples are required. We are going to consider two of those example after the next lemma.

3.10 Lemma: Let (Ω,A,P) be a probability measure and h ∶ [0,1] → [0,1] be an increasing
injective function with h(0) = 0 and h(1) = 1. Then, the function A ↦ ν(A) ∶= h(P(A)) is a
distorted probability function of P. If the distortion function h is convex (concave), the capacity
ν is supermodular (submodular).

Proof. According to De�nition 3.5 the composition ν = h○P is a capacity. To prove the assertion
that the capacity is supermodular if h is convex, we depart from modularity of the probability
measure

P(A ∩B) + P(A ∪B) = P(A) + P(B).

We have to show that ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B). We pick A,B ∈ A such that
a ∶= P(A) ≤ P(B) =∶ b. Then, P(A ∩B) =∶ u ≤ a ≤ b ≤ v ∶= P(A ∪B). The intervals [u, v] ⊇ [a, b]
have common centers 1

2u +
1
2v = 1

2a +
1
2b as P is modular. Applying the convexity of h infers

1
2h(u) +

1
2h(v) ≥

1
2h(a) +

1
2h(b), which can be easily transformed to h(u) + h(v) ≥ h(a) + h(b).

The set function ν is also 2-monotone as ν is supermodular. Please also compare with Example
2.1 in [Den94].

The following two examples show how the lemma can be used to generate sub- and supermod-
ular examples.

3.11 Example: a) Let U ∶ [1,4] → [0,1] be the uniform distribution on the corresponding
Borel sets and let h(x) = x2 be a convex function with h(0) = 0 and h(1) = 1. The function
A ↦ ν(A) ∶= h(U(A)) with A ⊆ [1,4] is a supermodular capacity. The probability
measure A ↦ ν(A) is de�ned by ν(A) = U(A)2 = (1

3L(A))2, e.g. ν([3,4]) = U([3,4])2 =
(1

3)
2 = 1

9 . Obviously, ν is not additive since ν([1,2] ∪ [2,3]) = ν([1,3]) = (2
3)

2 = 4
9 , while

ν([1,2]) + ν([2,3]) = (1
3)

2 + (1
3)

2 = 2
9 .

b) Let now U ∶ [1,2] → [1,
√

2] be the uniform distribution on the corresponding Borel
sets, h(x) = √

x be a concave function with h(0) = 0 and h(1) = 1. The function
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A ↦ ν(A) ∶= h(U(A)) with A ⊆ [1,2] is a submodular capacity and its probability
measure A ↦ ν(A) is de�ned by ν(A) =

√
U(A) =

√
L(A). Obviously, ν is not additive

since ν([1,1.5]∪[1.5,2]) = ν([1,2]) =
√

1 = 1, while ν([1,1.5])+ν([1.5,2]) =
√

1
2+

√
1
2 > 1.

Some authors directly call a set function convex (concave) if it is supermodular (submodular).

3.3 Continuity
As already mentioned in section 3.1, we strive to keep the note as general as possible. Hence,
we only require continuity from above or below where needed.

3.12 De�nition: A capacity ν on (A,Ω) is called
1) continuous from below if Ak ∈ A, Ak ⊆ Ak+1∀k ∈ N, implies limk→∞ ν(Ak) = ν (⋃∞k=1Ak);

2a) continuous from above if Ak ∈ A, Ak ⊇ Ak+1∀k ∈ N, and ν(Ak) < ∞ for at least one
integer k, implies limk→∞ ν(Ak) = ν (⋂∞k=1Ak);

2b) continuous from above at ∅ if Ak ∈ A, Ak ⊇ Ak+1∀k ∈ N, and ν(Ak) < ∞ for at least one
integer k, implies limk→∞ ν(Ak) = ν (∅) = 0;

3) continuous if ν is continuous from above and below.

In plain English, property 1) of the last de�nition means that the limit of the increasing meas-
ures µ(A1) ≤ . . . ≤ µ(Ak) ≤ . . . converges towards the measure µ(⋃k∈NAk) for any increasing
monotone sequence of sets (Ak)k∈N ∈ A.

Regarding the properties 2a) and 2b), we note, that 2b) is a special case of the more general
2a). Further, we have to assume that at least one set Ak with �nite measure exists in the case
of decreasing sequence, to avoid counter-examples such as the following:
Let ∣ ⋅ ∣ denote the counting measure, as de�ned in Example 3.4 b). Consider the decreasing
family of sets {Ak}k∈N, de�ned by Ak ∶= {k, k + 1, . . .}. Apparently, Ak ⊆ Ak+1 ⊆ . . . ↓ ∅ as
k →∞. However, each set Ak still comprises in�nitely many natural numbers. Hence, ∣Ak∣ = ∞
for all k ∈ N, but ∣ ⋂k∈NAk∣ = ∣∅∣ = 0.

Let us illustrate continuity in this context with two simple examples.

3.13 Example: Let the discrete set function ν ∶ A → {0,1} be de�ned on (Ω ∶= N,A ∶= 2N) by

να(A) ∶=
⎧⎪⎪⎨⎪⎪⎩

α if ∣A∣ = ∞
0 otherwise

with α ∈ (0,∞]. The discrete set function να is a capacity since it is grounded and monotone.
For k ∈ N set Ak ∶= {1, . . . , k}.

a) The set function να=1 is a normalized, submodular capacity. First, we show that ν is
not supermodular. Consider the sets NO ∶= {1,3,5, . . .} and NE ∶= {2,4,6, . . .} of all odd
and even natural numbers, respectively. Apparently, NO ∩NE = ∅, which is why we get
να=1(NO ∪NE) + να=1(NO ∩NE) = να=1(N) + να=1(∅) = 1 ≱ να=1(NO) + να=1(NE) = 2.
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Arbitrary subsets A,B ⊆ N can either be �nite or in�nite. In all four possible combin-
ations, the validity of the inequality να=1(A ∪ B) + να=1(A ∩ B) ≤ να=1(A) + να=1(B)
is ensured. Hence, να=1 is a submodular capacity. For all �nite subsets Ak, we have
να=1(Ak) = 0. The in�nite union of �nite strictly increasing sets is in�nite, that is,
να=1(⋃k∈NAk) = 1 and να=1 is therefore not continuous from below.

b) Now consider the capacity να=∞, which is even a �nitely additive measure since ultimately
∞+∞ =∞. According to the de�nition, we have ν(Ak) = 0, Ak ↑ N. On the other hand,
να=∞ (⋃∞k=1Ak) = να=∞(N) = ∞ ≠ limk→∞ να=∞(Ak) = 0 = ∑k∈N να=∞({k}). The capacity
να=∞ is therefore not continuous from below and it is not σ-additive.

A �nitely additive measure µ on a ring is continuous from below if and only if µ is σ-additive.
In addition, continuity from below implies continuity from above at ∅ under certain conditions
as pointed out in the following theorem.

3.14 Theorem: Let µ be a positive and additive set function on a ring R above Ω. Then the
following holds:

µ is σ-additive ⇔ µ is continuous from below ⇒ µ is continuous from above.

Proof. Let µ be σ-additive and An ∈ R with An ↑ A ∈ R. Any countable union can be written
as a countable union of disjoint sets. Let A1,A2, . . . ∈ R and de�ne D1 ∶= A1, D2 ∶= A2 ∖A1,
D3 ∶= A3 ∖ (A1 ∪ A2), . . . with (Di) ∈ R. Then, (Di) is a collection of disjoint sets with
A = ⋃i∈NAi = ⋃i∈NDi = ∑i∈NDi. Due to the σ-additivity as well as the relation between Ai and
Di, we can derive

µ(A) = µ(⋃
i∈N
Di) = µ(∑

i∈N
Di) = ∑

i∈N
µ(Di) = lim

k→∞

k

∑
i=1

µ(Di) = lim
k→∞

µ(
k

∑
i=1

Di) = lim
k→∞

µ(Ak),

which proves that µ is continuous from below.
Now, let µ be continuous from below and (Di) ∈ R be a series of disjoint sets with ∑i∈NDn ∈ R.
Due to the fact that∑ki=1Di ↑ ∑n∈NDn if k →∞, we infer limk→∞∑ki=1 µ(Di) = µ(limk→∞∑ki=1Di) =
µ(∑i∈NDi) = µ(⋃i∈NDi) by applying the (�nite) additivity of µ as well as the continuity from
below. Apparently, µ is σ-additive.
Finally, let µ be continuous from below with A1,A2, . . . ∈ R and Ai ↓ A ∈ R. If µ(A1) < ∞,
then all subsequent sets A2,A3, . . . will also result in a real number (smaller than ∞). Using
the same argument, we can also infer that µ(A) < ∞. Set Bi ∶= A1 ∖Ai ∈ R for every i ∈ N and
Bi = A1 ∖Ai ↑ A1. That is, we have transformed a decreasing set function into an increasing
one. Hence,

lim
i→∞

µ(Bi) = lim
i→∞

µ(A1 ∖Ai) = µ( lim
i→∞

Bi) = µ(⋃
i∈N
Bi) = µ(A1).

Continuity from above at ∅ is just a special case of the already proven direction.

According to the last theorem and Proposition 3.30 in [PS16], probability measures are con-
tinuous by design. Capacities, on the contrary, can be non-continuous as outlined in the last
examples.

The following example, taken from [WK09], exhibits the root-cause why a continuous extension,
as de�ned in section 3.1, is not in all cases possible.
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3.15 Example: Let (Ω ∶= N,A ∶= 2Ω) be a space, and, F ⊆ A be the class of all �nite subsets
of Ω. De�ne the set function ν ∶ F → {0,1} by

F ↦ ν(F ) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if F = ∅
1 otherwise

.(3.7)

Then, ν is a �nite continuous capacity on F . Note that a monotone decreasing sequence can
only converge towards ∅ if ∅ is one of its elements. If a capacity ν′ is an extension of ν
from F to A, then ∅ ≠ A ↦ ν′(A) ≥ 1 since ν′ is monotone. There exist at least one in�nite
Ak, for instance, Ak = {k, k + 1, . . .} and a corresponding family of sets (Fi), for instance,
Fi ∶= {k, k + 1, . . . , k + i − 1} with i ∈ N, such that Fi ↑ Ak.
There are now two possible cases for the extension ν′. First, we assume that there exist some
in�nite Ak with ν′(Ak) = ∞. Since Fi is �nite and ν′ an extension with Fi ↑ Ak, we have
ν′(Fi) = ν(Fi) = 1 for all i ∈ N. This shows that an arbitrary extension cannot be continuous
from below. Second, if ν′(Ak) < ∞ for any in�nite set Ak with k ∈ N. From Ak ↓ ∅ and
ν′(Ak) ≥ 1 for every k ∈ N, we know that ν′ is not continuous from above at ∅. Consequently,
the extension ν′ cannot be a continuous capacity on A.

3.4 Generalized Distribution Functions
Based on [Sca96], we de�ne a distribution function of a capacity as follows.

3.16 De�nition ([Sca96]): Let ν be a capacity on (Rn,B(Rn)). The function Fν ∶ Rn → R
de�ned by

Fν(x1, . . . , xn) ∶= ν ([−∞, x1] × . . . × [−∞, xn])(3.8)

is called a (generalized joint) distribution function associated with the capacity ν. Correspond-
ingly, the distribution function associated with the k-th projection νk is the function

Fνk(x1, . . . , xk, . . . , xn) ∶= ν (Rn × . . . × [−∞, xk] × . . .Rn) .(3.9)

Note that the k-th projection of a capacity on (Rn,B(Rn)) is a capacity according to c) of
Example 3.4.
The function Gν ∶ Rn → R de�ned by

Gν(x1, . . . , xn) ∶= ν ([x1,∞] × . . . × [xn,∞])(3.10)

is called (generalized joint) survival function associated with the capacity ν.

A speci�c type of survival function will be more suitable for the de�nition of the so-called
Choquet integral in the next section. In this section, however, we will focus on the distribution
function with respect to a capacity. The distribution or survival function of a discrete capa-
city18 is not covered in De�nition 3.16.

18If we are interested in a capacity on a �nite or countable set Ω ⊆ Rn, we would have to adapt the
de�nition accordingly

17



The function Fν can have countable many jump discontinuities in one dimension.19 No mat-
ter how small a jump a ∈ R would be, we could still �nd a n ∈ N, such that 1

n < a. A
maximum of n such jumps would �t into the range [0,1] of Fν . Thus, the set of all jumps

⋃n∈N {jumps of size 1
n or more} contains countably many discontinuities at most.

Before we actually study the connection between the properties and the necessary assumptions,
let us consider a simple example of a generalized distribution function.

3.17 Example: Recall the supermodular capacity A ↦ ν(A) ∶= h(U(A)), A ⊆ [1,4] on the
corresponding Borel sets as outlined in Example 3.11. ν is de�ned by a convex distortion
h(x) = x2 of the uniform distribution U[1,4]. Latter one can be represented by its probability
distribution function FU(t) = 1

3(t − 1).
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Figure 3: Continuous generalized distribution function of a supermodular capacity

According to equation (3.8), the continuous distribution function associated with ν equals
Fν(x) = h(FU(x)) = 1

9(x − 1)2 for x ∈ [1,4] as sketched in Figure 3.17.

The last example exhibits a continuous generalized distribution function, however, in general
capacities are not continuous from below but they do comply with (df1) - (df3).

3.18 Proposition: Any multivariate distribution function Fν associated with a capacity ν ∶
Ω ∶= Rn → R satis�es:

(df1) Fν(x1, . . . , xn) is increasing20 in each argument;

(df2) Fν(x1, . . . , xn) = 0 if min{x1, . . . , xn} → −∞ and ν is continuous from above;

(df3) Fν(x1, . . . , xn) = ν(Ω) = 1 if limxk = ∞ for all k ∈ {1, . . . , n} and ν is continuous from
below;

Proof. Let (xki), k ∈ {1, . . . , n} and i ∈ N be a set of n arbitrary sequences of real numbers.

19Refer to Example 3.19 for the multi-dimensional case
20Let a, b ∈ R with a < b, then F is called increasing in the k-th element if F (x1, . . . , xk = a, . . . , xn) ≤

F (x1, . . . , x
′

k = b, . . . , xn)
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(df1) Consider the n-boxes A ∶= [−∞, x1] × . . . × [−∞, xk] × . . . × [−∞, xn] and B ∶= [−∞, x1] ×
. . .×[−∞, x′k]× . . .×[−∞, xn] with k ∈ {1, . . . , n}. Given that A ⊆ B, we have ν(A) ≤ ν(B)
and thus Fν(x1, . . . , xk, . . . , xn) ≤ Fν(x1, . . . , x

′
k, . . . , xn) because of the de�nition of Fν .

(df2) Let xmin,i ∶= min{x1i, . . . , xni} be the minimum of the set of sequences (xki) that converges
towards −∞ for i → ∞. According to the de�nition of Fν , we receive a corresponding
sequence ([−∞, x1i] × . . . × [−∞, xmin i] × . . . × [−∞, xni]) of n-boxes, where at least the
interval with index min converges towards ∅ if i→∞. The Cartesian product of any set
comprising the empty set equals the empty set. The assertion therefore follows by using
the de�nition of Fν and the continuity from above:

lim
i→∞

F (x1i, . . . , xmin i, . . . , xni) = lim
i→∞

ν([−∞, x1i] × . . . × [−∞,ni ])

= ν (
∞
⋂
i=1

([−∞,1i ] × . . . × [−∞,ni ]))

= ν (∅) = 0.

(df3) Let again ([−∞, x1i] × . . . × [−∞, xni]) be a sequence of n-boxes, where all xki, k ∈
{1, . . . , n} converges towards ∞ if i → ∞, denoted by (xki)

i→∞→ Ω = Rn. Interpreting
this geometrically means that the corresponding union of those sequences of n-intervals
converges increasingly towards Ω = Rn. Given that ν is continuous from below, we infer

lim
x
i→∞→ ∞

Fν(x1i, . . . , xki, . . . , xni) = lim
(xki)

i→∞→ ∞
ν ([−∞, x1i] × . . . × [−∞, xni])

= ν (
∞
⋃
i=1

[−∞, x1i] × . . . × [−∞, xni])

= ν(Ω) = 1.

A generalized distribution function may not be n-increasing, i.e., it may not be a probability
distribution function as the following example shows.

3.19 Example: Let F ∶ R2 → [0,1] be de�ned by

F (x, y) =
⎧⎪⎪⎨⎪⎪⎩

0 if y + x < 0

1 if y + x ≥ 0
.

The function F takes the value 0 for the points below the line y = −x in R2, whereby it takes
the value 1 for the points above and on that line. The blue-dashed area including the line in
Figure 4 represents the part of the domain that is mapped to 1 via F , while the area below the
line is mapped to 0.
F is increasing in each argument, i.e., it complies with (df1), as can be seen by keeping either
x or y constant and varying the other variable from −∞ to ∞. Apparently, F also converges to
0 and 1 as required in (df2) and (df3), even though an underlying capacity is not continuous
from below.21

21To see that the underlying capacity is not continuous from below, let (Ak)k∈N be a family of sets
de�ned by Ak ∶= [−∞,− 1

k
] × [−∞,− 1

k
]. Apparently, Ak ↑ A ∶= [−∞,0] × [−∞,0] and ν(A) = 1.

However, ν(Ak) = 0 for all k ∈ N.
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Figure 4: Graphical segmentation of F 's domain R2 as well as an indication for the corres-

ponding function values

F is, however, not 2-increasing. To see this, pick the left-lower corner of a 2-box below the
line y = −x. The other three points need to be above the line y = −x. For instance, set x1 = 2,
x2 = −1, y1 = 2 and y2 = −1 as sketched in Figure 4, then we get +F (2,2)−F (2,−1)+F (−1,−1)−
F (−1,2) = −1. Hence, F is not 2-increasing and it is therefore not a probability distribution
function.

Capacities are in general not n-increasing as outlined in Example 3.19. The next lemma shows
what property a capacity needs to overcome this shortfall.

3.20 Lemma: ([Sca96]) If ν on (Rn,B(Rn)) is n-monotone, then Fν is k-increasing for every
positive integer k ≤ n.

Proof. Refer to Lemma 6 of [Sca96].

In particular for the case n = 2, the distribution function of any supermodular capacity is
increasing and 2-increasing.

3.21 Corollary: ([Sca96]) If ν is a n-monotone capacity on (Rn,B(Rn)), then there exists a
�nitely additive probability measure µ on M , such that Fµ = Fν .

Proof. By Lemma 3.20, if ν is n-monotone, then its distribution function Fν is k-increasing for
every positive k ≤ n. According to [MDCQ08] this coincides with the distribution function of a
�nitely additive probability measure.

A function F that complies with (df1) - (df3) might be used to construct a capacity whose
distribution function is exactly F .

3.22 Example: We continue with Example 3.19 and show that a corresponding capacity can be
derived from F . We de�ne ν([−∞, x]×[−∞, y]) ∶= F (x, y) for all 2-boxes A ∶= [−∞, x]×[−∞, y]
in R2. Consider the extension of ν from the set of all 2-boxes to the Borel sets, de�ned by

B ↦ ν′(B) ∶= supA⊂Bν(A) for all B ∈ B.(3.11)

The supremum of all known measures ν(A) with A ∋ A ⊂ B ∈ B is used to come up with an
extended measure on the Borel sets B ∈ B. Since the measure is de�ned via the supremum,
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it is monotone by de�nition. The remaining properties of a capacity are also ful�lled. Please
refer to Example 3.6 c) for an example with �nite basic set.

The next example illustrates that a distribution function associated with a capacity does not
uniquely characterize a capacity. That is, each function F satisfying properties (df1) to (df3)
may be used to construct a capacity ν, whose distribution function is F . Contrary to the case
of probability measures, the derived capacity ν is not uniquely determined by F .

3.23 Example: Consider the probability distribution function FL ∶ [0,1]2 → [0,1] de�ned by
FL(x1, x2) = (1 − x1)(1 − x2) on the Borel space (R2,B(R2),L).22 Applying the probability

Figure 5: Graph of probability distribution function FL on [0,1]2

measures on the 2-box A = [1
4 ,

3
4] × [1

4 ,
3
4], we obtain the F -volume L(A) = 1

4 . If we instead use
the extension de�ned in (3.4) to determine the capacity ν (and take monotonicity into account),
we get

ν(A) = sup(x1,x2)∈AF (x1, x2)

= sup{F (1

4
,
1

4
) , F (1

4
,
3

4
) , F (3

4
,
1

4
) , F (3

4
,
3

4
)}

= sup{ 3

16
,

3

16
,

1

16
,

9

16
} = 9

16
.

Note, that the Lebesgue measure L as well as ν are both capacities with FL as its distribution
function.

As in the additive case, the multivariate distribution function of a supermodular capacity
satis�es the Frechet bounds.

3.24 Theorem (Frechet bounds for supermodular capacities, [Sca96]): If the capacity ν on

22A similar example can be found in [DS10]
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(Rn,B(Rn)) is supermodular, then

max(
n

∑
k=1

Fνk − n + 1,0) ≤ Fν(x1, . . . , xn) ≤ min(Fν1(x1), . . . , Fνn(xn)),(3.12)

where Fν is the distribution function associated with ν and Fνk the corresponding marginal
distribution functions.

Proof. The second inequality Fν(x1, . . . , xn) ≤ min(Fν1(x1), . . . , Fνn(xn)) is immediate by
monotonicity of ν and the de�nition of Fνk for k ∈ {1, . . . , n}. To proof the �rst inequality,
let Ai ∶= (R× . . .×R× [−∞, xi] ×R× . . .×R). By supermodularity of ν applied on the two sets
A1 and (A2 ∩ . . . ∩An) we get

ν(A1 ∩ . . . ∩An) ≥ ν(A1) + ν(A2 ∩ . . . ∩An) − ν(A1 ∪ (A2 ∩ . . . ∩An)).

Iterating this principle (n− 1) times on (A2 ∩ . . .∩An), i.e., applying the supermodularity of ν
on the two sets A2 and (A3 ∩ . . .∩An) and considering that −ν(A1 ∪(A2 ∩ . . .∩An) ≥ −1 we get

ν(A1 ∩ . . . ∩An) ≥ ν(A1) + ν(A2) + ν(A3 ∩ . . . ∩An) − ν(A2 ∪ (A3 ∩ . . . ∩An)) − 1

⋮
≥ ν(A1) + . . . + ν(An) − n + 1,

which proves the assertion.

4 Choquet Integral

The Lebesgue integral has a lot of useful properties for both theory and application. However,
it may also be that the Lebesgue integral is too restrictive for certain situations. The root-
cause is again the σ-additivity, just as in the case of probability measures. A natural question
is therefore, how we could meaningfully de�ne the integral ∫ f dν of a function f with respect
to a capacity ν?

The answer is not unique as there are several approaches to de�ne such a generalized integral.
We will focus on the so-called Choquet integral. Choquet de�ned23 an integration operation
with respect to the non-necessarily additive set function ν in the 1950s. He has shown that
it is possible to develop a rich theory of integration in a non-additive setting. Schmeidler
[Sch86] rediscovered and extended the Choquet integral in the 1980s. This section is based
on [MM03], [Gra16] and [Sch86], that take also Schmeidler's ideas into account. The Choquet
integral will be introduced in several steps, beginning with non-negative and then extending
the approach to general functions. For the sake of understanding, it is helpful to know how
the Lebesgue measure and integral is de�ned and derived since there are several similarities
between Choquet's and Lebesgue's approach.

4.1 Basic De�nitions
Before we can actually de�ne the Choquet integral of a function f ∶ Ω → R, we �rst need to
study so-called upper level sets, which divide ran(f) = R into a non-increasing family of sets.
For the sake of completeness and understanding, we will also de�ne so-called lower level sets.
Please also refer to, for instance, [Den94].

23Refer to page 265 � in [Cho54]
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4.1 De�nition: Let (Ω,A) be a measurable space, f ∶ Ω→ R be a A-measurable function and
t ∈ R, then the set

{f ≥ t} ∶= {x ∈ Ω∣ f(x) ≤ t } ⊆ Ω

is called a upper level set of f for the level t. The system of all upper level sets of f is called
the family of upper level sets of f . A set {f > t} = {x ∈ Ω∣ f(x) > t } is called strict upper level

set of f for the level t. If we replace '≤' ('<') by '≥' ('>') in the de�nition of an upper level set
we would receive (strict) lower level sets.

In this note, however, we focus on upper level sets since these are more suitable to de�ne
the Choquet integral. The following examples illustrate the de�nition of lower level sets using
simple functions.

4.2 Example: a) Let us consider the linear function f(x) = −2x + 1 de�ned on f ∶ Ω ∶=
[0,2] → [−3,1] as depicted in Figure 6. For t ∈ {−3,−2,−1,0,1} ⊂ ran(f), we get the

0 0.5 1 1.5 2

−3

−2

−1

0

1

x

f
(
x
)
=
−
2x
+
1

Figure 6: Graph of function f(x) = −2x + 1 on domain [0,2]

following upper level sets by solving the de�ning inequalities:

{f ≥ −3} = {x ∈ [0,2] ∣ − 2x + 1 ≥ −3 } = [0,2] {f ≥ −2} = {x ∈ [0,2] ∣ − 2x + 1 ≥ −2 } = [0,1.5]
{f ≥ −1} = {x ∈ [0,2] ∣ − 2x + 1 ≥ −1 } = [0,1] {f ≥ 0} = {x ∈ [0,2] ∣ − 2x + 1 ≥ 0 } = [0,0.5]
{f ≥ 1} = {x ∈ [0,2] ∣ − 2x + 1 ≥ +1 } = {0}.

If t ∈ [−3,1), the solution is given by [0, 1−t
2 ]. Apparently, for t = 1 we get {0} as solution.

The upper level sets are non-increasing for increasing t's, i.e, {f ≥ −3} ⊃ {f ≥ −2} ⊃ {f ≥
−1} ⊃ {f ≥ 0} ⊃ {f ≥ 1}.

b) Let us now consider the non-injective function f ∶ [−2,2] → R de�ned by f(x) = x2 with
Ω ∶= [−2,2]. The corresponding upper level sets for t ∈ {0,1,2,3,4} ⊂ ran(f) are as
follows:

{f ≥ 0} = {x ∈ [−2,2] ∣ x2 ≥ 0 } = [−2,2] {f ≥ 1} = {x ∈ [−2,2] ∣ x2 ≥ 1 } = Ω ∖ (−1,1)
{f ≥ 2} = {x ∈ [−2,2] ∣ x2 ≥ 2 } = Ω ∖ (−

√
2,

√
2) {f ≥ 3} = {x ∈ [−2,2] ∣ x2 ≥ 3 } = Ω ∖ (−

√
3,

√
3)

{f ≥ 4} = {x ∈ [−2,2] ∣ x2 ≥ +4 } = {−2,+2}.
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Again, the upper level sets are non-increasing for increasing t's, i.e, {f ≥ 0} ⊃ {f ≥ 1} ⊃
{f ≥ 2} ⊃ {f ≥ 3} ⊃ {f ≥ 4}. Apparently, Ω ∖ (−

√
t,
√
t) provides the upper level sets

{x2 ≥ t} of f for levels t ∈ [0,4] = ran(f).

c) Let us now consider the exponential function f ∶ [0,1] → R de�ned by f(x) = exp(x) = ex
with Ω ∶= [0,1]. The corresponding upper level sets for t ∈ {1,2, e} ⊂ ran(f) = [1, e] are
as follows:

{f ≥ 1} = {x ∈ [0,1] ∣ ex ≥ 1 } = [ln(1),1] = [0,1] {f ≥ 2} = {x ∈ [0,1] ∣ ex ≥ 2 } = [ln(2),1]
{f ≥ e} = {x ∈ [0,1] ∣ ex ≥ e } = [ln(e),1] = {1}

The upper level sets are again non-increasing for increasing t's, i.e, {f ≥ 1} ⊃ {f ≥
2} ⊃ {f ≥ e}. Apparently, [ln(t),1] provides the upper level sets {ex ≥ t} for levels
t ∈ [1, e] = ran(f).

The following lemma is going to formalize the observation made in the examples above.

4.3 Lemma: Let (Ω,A) be a measurable space and f ∶ Ω → R be a A-measurable function.
The upper level sets {f ≥ t} are non-increasing with respect to increasing t ∈ [0,∞) and the set
inclusion.

Proof. Let t1, t2 ∈ R two arbitrary real numbers with t1 < t2. We need to prove that {f ≥
t1} ⊇ {f ≥ t2}. A real value f(x) is assigned to every x ∈ Ω since f is a function. Thus
{f ≥ t1} ⊇ {f ≥ t2} due to the de�nition of upper level sets and t1 < t2.

Another important concept, that needs to be reassessed in the context of general measures, is
that of null sets. A set N , that cannot be seen by a classical additive measure µ in the sense
that it's measure µ(N) is zero, is called null set24 in classical measure theory. The de�nition
of a Lebesgue null set is, however, not suitable for capacities as it is possible that there exist
measurable sets A,B ∈ A (and a super-additive measure ν), such that ν(A) = ν(B) = 0 but
ν(A ∪B) > 0. For capacities this notion can be extended as follows.

4.4 De�nition: ([MS91] and [Gra16]) Let ν be a capacity on the measurable space (Ω,A). A
set N ∈ A is called a null set with respect to ν, if

ν(A ∪N) = ν(A) for all A ∈ A.

A null set with respect to a capacity might be interpreted as a set which is invisible and/or
unimportant with respect to ν when adding it with all measurable sets A ∈ A. The main
properties of null sets with respect to a capacity are given in the following proposition.

4.5 Proposition ([Gra16]): Let ν be a capacity on the measurable space (Ω,A), then the
following holds:

24A subset N ⊆ R is said to have Lebesgue measure 0 or is called a Lebesgue null set if, for every δ > 0,
N can be covered by a countable number of open intervals the sum of whose length is less than δ.
For instance, every countable set is a Lebesgue null set.
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(i) The empty set is a null set;

(ii) If N is a null set, then ν(N) = 0;

(iii) If N is a null set, then every M ∈ A, M ⊆ N is a null set;

(iv) If A is closed under �nite unions, the �nite union of null sets is a null set;

(v) If A is closed under countable unions and if ν is continuous from below, the countable
unions of null sets is a null set;

(vi) If ν is sub-additive, every measurable set of capacity zero is a null set.

Proof. (i) By de�nition ν(A ∪ ∅) = ν(A) ∀A ∈ A as well as ν(∅) = 0.

(ii) Let N ∈ A be a null set, then ν(A ∪N) = ν(A) for all A ∈ A. Due to the fact that ν is
monotone and A ⊆ A∪N is valid, we get ν(A) ≤ ν(A∪N) ≤ ν(A) which implies ν(N) = 0.

(iii) The assertion follows directly from the proof of (ii) since M ⊆ N and hence ν(M) ≤
ν(N) = 0.

(iv) Let N1, . . . ,Nk ∈ A a �nite collection of null sets and N ∶= N1∪ . . .∪Nk the �nite union of
these null sets. Since Ni with i ∈ {1, . . . , k} is a null set, ν(A ∪Ni) = ν(A) for all A ∈ A.
Note that A′ ∶= N∖Ni also belongs to A as N1, . . . ,Nk are measurable sets and A is closed
under countable unions. Hence, ν(A∪N) = ν(A∪N1∪ . . .∪Ni∪ . . .∪Nk) =ν(A∪A′∪Ni)=
ν(A) for all A ∈ A (incl. A ∪A′) and all i ∈ {1, . . . , k}.

(v) The assertion follows directly from the proof of (iv) and the continuity assumption.

(vi) First, let us assume that ν is sub-additive and ν(N) = 0 for N ∈ A. We have to show that
ν(A∪N) = ν(A) for all A ∈ A. Without loss of generality we assume that A∩N = ∅. Due
to the sub-additivity of ν, we get ν(A ∪N) ≤ ν(A) + ν(N) = ν(A). Since ν is monotone
and A ⊆ A∪N , we get ν(A) ≤ ν(A∪N). Hence, ν(A∪N) = ν(A) for an arbitrary A ∈ A,
which proves the assertion.

The 'almost everywhere' concept is strongly related to null sets and might be de�ned in the
same way as in classical measure theory.

4.6 De�nition: Let ν be a capacity on a space (Ω,A), P be a property that is declared for
each x ∈ Ω. The property P holds almost everywhere (a.e.) if the set for which the property
holds takes up nearly all relevant possibilities. More speci�cally, a property P holds a.e., if the
set of elements for which the property does not hold is a null set N .

4.7 Lemma: Let ν be a capacity on a measurable space (Ω,A). A measurable set N is a null
set if and only if ν(A ∩NC) = ν(A) for all A ∈ A.

Proof. If N is a null set, then we have ν(A∪N) = ν((A∩NC)∪N) = ν((A∪N)∩(NC ∪N)) =
ν(A ∪N) = ν(A) for every A ∈ A.
Let us now turn to speci�c spaces of functions that are important for the de�nition of the
Choquet integral.
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4.8 De�nition: Let ν be a capacity on the measurable space (Ω,A). The set of all bounded
A-measurable functions f ∶ Ω → R is denoted by B(A). Accordingly, the set of all bounded
A-measurable non-negative functions is denoted by B+(A).

Both B(A) and B+(A) show a familiar structure with respect to the standard order on func-
tions as stated in the next proposition.

4.9 Proposition: The set B(A) endowed with the usual order on functions is a lattice. That
is, if f, g ∈ B(A), then f ∧ g, f ∨ g ∈ B(A). If, in addition, A is a σ-algebra, then B(A) is a
vector space.

Proof. Let f, g ∈ B(A). We only prove that (f ∧ g)−1(a, b) ∈ A for any open (possibly un-
bounded) interval (a, b) ⊆ R. The other cases being similar. For eacht t ∈ R, the following
holds:

(f ∧ g > t) = (f > t) ∪ (g > t)
(f ∧ g < t) = (f < t) ∪ (g < t).

Hence,

(f ∧ g)−1(a, b) = (f ∧ g > a) ∪ (f ∧ g < b)
= ((f > a) ∪ (g > a)) ∩ ((f < b) ∩ (g < b)) ∈ A,

as desired. Finally, the fact that B(A) is a vector space when A is a σ-algebra is a standard
result in measure theory, see, for instance, section 19 of [Bil95].

The same statement holds true for the set B+(A).

Let f be a bounded measurable real-valued function. We can decompose f into its so-called
positive and negative parts, that is,

f = f+ − f− with f+ = 0 ∨ f and f− = (−f)+.

Note that f+ and f− are non-negative, bounded and measurable functions, that is, f+, f− ∈
B+(A). The decomposition of f in positive and negative parts as well as the vector space
structure become useful when extending the Choquet integral of a non-negative function, as
set out in the next section, to general functions.

4.2 Non-Negative Functions
Now we have all ingredients for the de�nition of the Choquet integral of a non-negative meas-
urable function. That is, families of upper level sets are used in combination with a Riemann
integral to de�ne the Choquet integral of a non-negative function f ∶ Ω→ R.

4.10 De�nition: (Choquet Integral of Non-Negative Function) Let (Ω,A) be a measurable
space, ν a capacity and f ∶ Ω→ R a non-negative A-measurable function. The Choquet integral
of a non-negative function f with respect to ν is given by

(C)∫
Ω
fdν ∶= ∫

∞

0
ν({f ≥ t}) dt = ∫

∞

0
ν({x ∈ Ω∣f(x) ≥ t}) dt,(4.1)

where the integral on the right of the equation is a well-de�ned Riemann integral.
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To see why the Riemann integral of the non-negative function f is well de�ned, �rst observe
that

f−1([t,∞)) = {f ≥ t} = {x ∈ Ω∣f(x) ≥ t} ∈ A for each t ∈ R(4.2)

holds true. That is, the generalized inverse of an interval [t,∞) ∈ B can be traced back to
a set A ∈ A since f is A-B-measurable function. By requiring that {f ≥ t}, the range R of
the measurable function f is divided into sets of non-increasing intervals and thus elements of
B. A set A ∈ A is assigned to each of the interval sets via (4.2). Note that an interval set
can also consist of an union of distinct intervals as shown in b) of Example 4.2. The Borel
σ-algebra, on the other hand, is an extension of all (half-open, open or closed) intervals as set
out in � 15, [Hal78]. The Borel sets B can therefore be generated using the family of all (half-
open, open or closed) intervals and the extension theorems as explained in chapter III of [Hal78].

A relative of the distribution function, the so-called survival function Gν,f ∶ R→ R of f ∶ Ω→ R
with respect to ν, is de�ned by Gν,f(t) ∶= ν({f ≥ t}) for each t ∈ R. Note that the de�nition of
Gν,f di�ers from the joint survival function (3.10) since f does not need to be de�ned on the
Borel σ-algebra. Using the survival function of the non-negative measurable function f , we can
write (4.7) as

(C)∫
Ω
f dν = ∫

∞

0
ν({f ≥ t}) dt = ∫

∞

0
Gν,f(t) dt.

The familiy {f ≥ t} with t ∈ R is a decreasing series of sets according to Lemma 4.3, i.e., it
is a chain25 with respect to the set inclusion. Since ν is both non-negative and bounded, the
function Gν,f is non-negative, decreasing and with compact support.26 By standard results on
Riemann integration, see Theorem 2.26 in [DSK11], for instance, we conclude that the Riemann
integral ∫ ∞0 Gν,f(t) dt exists, and so the Choquet integral (4.7) is well de�ned.

One reason for introducing survival functions Gν,f(t) is that they make it possible to replace
integrals over Ω by integrals over t ∈ [0,∞), i.e.,

(C)∫
Ω
fdν = ∫

∞

0
ν({f ≥ t}) dt = ∫

∞

0
ν({x ∈ Ω∣f(x) ≥ t}) dt = ∫

∞

0
Gν,f(t) dt.

This replacement of the integration variable is ultimately based on the Fubini integral theorem
as pointed out at page 172 in [Rud87]. A consequence of the same principle is, that the Choquet
integral ∫ f dν reduces to the standard additive integral when the capacity is additive.

4.11 Proposition: ([MM03]) Let f ∈ B+(A) and µ be an additive capacity (i.e. a measure)
on a measurable space (Ω,A). Then

(C)∫
Ω
f dµ = ∫

Ω
f dµ = ∫

∞

0
µ({f ≥ t}) dt

holds true, where ∫Ω f dµ is the standard integral with respect to an additive capacity.

25A collection C in A is a chain with respect to the set inclusion if for each A,B ∈ C it holds either
A ⊆ B or B ⊆ A. Throughout we assume that ∅,Ω ∈ C.

26Note that the corresponding distribution function does not have a compact support and is therefore
not that suitable for the de�nition of the Choquet integral.
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Proof. Let us �x one arbitrary x ∈ Ω. We have

∫
∞

0
1{f≥t}(x) dt = ∫

∞

0
1[0,f(x)](t) dt = ∫

f(x)

0
dt = f(x).

Equivalently, f(x) = ∫ ∞0 1{f≥t}(x) dL, where L is the Lebesgue measure on R. For the standard
integral ∫Ω f dµ, we can write

∫
Ω
f dµ = ∫

Ω
(∫

∞

0
1{f≥t}(x) dL) dµ

= ∫
∞

0
(∫

Ω
1{f≥t}(x) dµ) dL

= ∫
∞

0
µ({f ≥ t}) dL = ∫

∞

0
µ({f ≥ t}) dt

by using the Fubini theorem. This proves the assertion.

The Choquet integral could have also been de�ned using strict upper level sets {f > t}. As
stated before, lower level sets {f ≤ t} and the corresponding distribution functions would lead
to a non-compact support, which is inconvenient for the de�nition of the Choquet integral.

4.12 Proposition: ([MM03]) Let ν be a capacity and f a non-negative function in B(A).
Then,

∫
∞

0
ν({f ≥ t}) dt = ∫

∞

0
ν({f > t}) dt

Proof. Set Gν,f(t) ∶= ν({f ≥ t}) for each t ∈ R. Moreover, set G′
ν,f ∶= ν({f > t}) for each t ∈ R.

The order {x ∈ Ω∣f(x) ≥ t+ 1
n} ⊆ {x ∈ Ω∣f(x) > t} ⊆ {x ∈ Ω∣f(x) ≥ t} holds for each t ∈ R and for

every n ∈ N according to Lemma 4.3. Hence, Gν,f(t+ 1
n) ≥ G

′
ν,f(t) ≥ Gν,f(t) for each t ∈ R, n ∈ N.

The Riemann-integrable function Gν,f is continuous except on an at most countable set D ⊂ R.
If Gν,f is continuous at t, we have Gν,f(t) = limn→∞Gν,f(t + 1

n) ≥ G′
ν,f(t) ≥ Gν,f(t), so that

G′
ν,f(t) = Gν,f(t) for each t ∈ R ∖D. Standard Riemann integration results imply that their

integrals are equal.

Note that a by-product of the last proposition is that the Riemann-integrable survival function
Gν,f is continuous except on an at most countable set D ⊂ R. Typical examples are 'smoothly
continuous' functions or step functions.

In the following examples, we use distorted probability functions ν = h ○ L, where L is the
Lebesgue measure, to determine the Choquet integral of a (non-)additive measure. Be aware
that there are capacities that cannot be represented via distorted probabilities.27

4.13 Example: a) Let Ω ∶= [0,1], f(x) = x for all x ∈ Ω and B = B([0,1]) the class of all
Borel sets in [0,1]. Let furthermore ν ∶ B → [0,1] be a (distorted) probability measure
de�ned by ν([a, b]) = L([a, b]) = (b − a). Here, the Lebesgue measure L is 'distorted' by
the function h ∶ [0,1] → [0,1] with h(t) = t. According to (4.7) the Choquet integral of

27For instance, refer to [NT05] for the discrete case
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the non-negative function f with respect to ν is

(C)∫
Ω
fdν = ∫

∞

0
Gν(t) dt = ∫

∞

0
ν({x ∈ Ω∣f(x) ≥ t}) dt = ∫

∞

0
ν({x ∈ [0,1]∣x ≥ t}) dt

= ∫
1

0
L([t,1]) dt = ∫

1

0
(1 − t) dt

= ∫
1

0
(1 − t) dt = (t − t

2

2
) ∣1

0
= 1

2
.

Apparently, this Choquet integral is simply the Riemann integral of the function f .

b) Let Ω ∶= [0,1], f(x) = x for all x ∈ Ω and B = B([0,1]) the class of all Borel sets in
[0,1].28 Let furthermore ν ∶ B → [0,1] be a distorted probability measure de�ned by
ν([a, b]) = [L([a, b])]2 = (b − a)2. Here, the Lebesgue measure L is distorted by the
function h ∶ [0,1] → [0,1] with h(t) = t2. According to (4.7) the Choquet integral of the
non-negative function f with respect to ν is

(C)∫
Ω
fdν = ∫

∞

0
Gν(t) dt = ∫

∞

0
ν({x ∈ Ω∣f(x) ≥ t}) dt = ∫

∞

0
ν({x ∈ [0,1]∣x ≥ t}) dt

= ∫
1

0
L([t,1])2 dt = ∫

1

0
(1 − t)2 dt

= ∫
1

0
1 − 2t + t2 dt = (t − t2 + 1

3
t3) ∣1

0
= 1

3
.

c) Let Ω ∶= [0,1], f(x) = x2 for all x ∈ Ω and B = B([0,1]). Let furthermore ν ∶ B → [0,1]
be a distorted probability measure de�ned by ν([a, b]) = [L([a, b])]3 = (b − a)3. Here,
the Lebesgue measure L is distorted by the function h ∶ [0,1] → [0,1] with h(t) = t3.
According to (4.7) and Example 4.2 b), the Choquet integral of the non-negative function
f with respect to ν is

(C)∫
Ω
fdν = ∫

∞

0
ν({f ≥ t}) dt = ∫

∞

0
ν({x ∈ [0,1]∣x2 ≥ t}) dt

= ∫
1

0
L([0,1] ∖ [0,

√
t))3 dt = ∫

1

0
(1 −

√
t)3 dt = 1

10
.

We now establish further basic properties of the survival function Gν . Before that, we introduce
the notions of essential supremum and essential in�mum.

4.14 De�nition: (Essential Supremum and In�mum) For any f ∈ B+(A) and any capacity
ν on the measurable space (Ω,A), the essential supremum and essential in�mum of f with
respect to ν are de�ned by

ess supνf ∶= inf{ t ∈ R ∶ {x ∈ Ω∣ f(x) > t} is null w.r.t. ν }
ess infνf ∶= sup{ t ∈ R ∶ {x ∈ Ω∣ f(x) < t} is null w.r.t. ν }

respectively.

28Example taken form chapter 11 of [WK09]
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4.15 Example: Let us consider the function f(x) =
⎧⎪⎪⎨⎪⎪⎩

x2 x ∈ [1,2) ∪ (2,3]
10 x = 2

as sketched in

Figure 4.15. Apparently, the supremum of the function f on the support [1,3] is 10, however,
the essential supremum is only 9 since x = {2} is a null set. The di�erence between the

1 1.5 2 2.5 3

2

4

6

8

10

x

f
(x

)=
x

2
supx∈[1,3]f(x) =

ess supx∈[1,3]f(x) = 9

Figure 7: Supremum and essential supremum of f

in�mum and essential in�mum is similar. Please also think about how this would a�ect the
corresponding survival function.

For a more detailed outline of essential supremum and in�mum, we refer to section 4.2 in
[Gra16]. We can now use both new terms to describe the range of f and the support of the
corresponding survival function Gν,f of a non-necessarily additive set function ν.

4.16 Lemma: ([Gra16]) Let f ∈ B+(A) and any capacity ν on the measurable space (Ω,A).
Then, Gν,f ∶ R→ R

(i) is a non-negative and non-increasing function with Gν,f(0) = ν(Ω);

(ii) Gν,f(t) = ν(Ω) on the interval [0, ess infνf];

(iii) has a compact support, namely [0, ess supνf] with Gν,f(t) = 0 for t > ess supνf .

Proof. (i) Obvious by monotonicity of ν and the fact that t < t′ implies {f ≥ t} ⊇ {f ≥ t′}.

(ii) By de�nition, N ∶= {f < ess infνf} is a null set, hence Gν,f(ess infνf) = ν(Ω∖N) = ν(Ω)
by (ii) of Lemma 4.5.

(iii) Since f is bounded, so is its essential supremum. Now, by de�nition {x ∈ Ω∣f(x) >
ess supνf} is a null set, therefore Gν,f(t) = 0 if t > ess supνf .

4.3 General Functions
In the last section 4.2, we have de�ned the Choquet integral for non-negative A-measurable
functions f ∈ B+(A). The extension of the Choquet integral to general A-measurable functions
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f ∈ B(A) needs several additional steps. First, we need to identify each element of A with
a speci�c functional29. Second, each non-negative functional in return is identi�ed with its
corresponding Choquet integral. Finally, each general function is identi�ed with a functional
(i.e. a generalized integral) that ful�lls a speci�c property. Methods from functional analysis
will be handy for this purpose.

Let us consider a Choquet integral type, which is by de�nition additive with respect to its
positive and negative part. That is,

(C)∫ f dν ∶= (C)∫ f+ dν − (C)∫ f− dν,(4.3)

where f+ is the positive and f− the negative part. Note that both f+, f− ∈ B+(A). Further,
for f ∈ B(A) the symmetry property

(C)∫ (−f) dν = (−1) ⋅ (C)∫ f dν

holds true since (−f)+ = sup{0,−f} = f− and (−f)− = sup{0, f} = f+. In addition, the system
of upper level sets {f ≥ t} lead to the same Riemann integral as the system of lower level sets
{f ≤ t} = {(−f) ≥ t} (over Ω). The integral, as de�ned in (4.3), is therefore called symmetric

Choquet integral.

Let us de�ne two important terms.

4.17 De�nition: 1) We say that a functional on B(A) is translation invariant (t.i.) if for
every f ∈ B(A) and every α ∈ R the equation νc(f + α1Ω) = νc(f) + ανc(1Ω) holds true;

2) Let (Ω,A, ν) be a measurable space and f ∈ B(A). A translation invariant functional
νc ∶ B(A) → R de�ned by νc(f) ∶= (C) ∫Ω f dν is called Choquet functional.

The following example shows that the symmetric Choquet integral is not translation invariant.

4.18 Example: Let ν be a capacity over the measurable space (Ω = R,A).30 Let f = sgn(x)
be the signum function. According to (4.3), the symmetric Choquet integral equals

(C)∫ sgn dν =(C)∫ 1R+ dν − (C)∫ 1R− dν

=ν(R+) − ν(R−),

whereby we have used Lemma 4.19 for the last equation. If we translate (i.e. shift) the function
f to get g ∶= 1R + sgn for all x ∈ R, we have

(C)∫ 1R + sgn dν =∫ 1R + sgn dν = 2ν(R+).

Note that 1R + sgn = 0 for x ∈ (−∞,0].

29A functional is a mapping of a function f ∶ Ω → R to the value of the function at a point x ∈ Ω, i.e.
f ↦ f(x) with x ∈ Ω.

30Example taken from section 4.3.1 in [Gra16]
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Let us take a step back to consider the overall picture. Each capacity ν on (Ω,A) induces a
functional νc ∶ B+(A) → R given by νc(f) = (C) ∫ f dν for each f ∈ B+(A). A special case
of this observation, where f is a characteristic function 1A with A ∈ A, leads to the following
lemma.

4.19 Lemma: Let 1A be a characteristic function with A ∈ A. Then, for every capacity ν on
(Ω,A) we have

(C)∫
Ω
1A dν = ν(A).

Proof. The functional 1A is non-negative for any set of its domain and thus belongs to B+(A).

According to the de�nition of the characteristic function 1A(x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ A
0 else

and the Choquet

integral, we derive

(C)∫
Ω
1A dν = ∫

∞

0
ν({x ∈ Ω∣1A(x) ≥ t}) dt = ∫

1

0
ν(A) dt = ν(A)

for all A ∈ A. Note that for t = 0, we get {1A ≥ 0} = Ω since ran(1A) = {0,1}. For t ∈ (0,1],
we get {1A ≥ t} = A. All other disjoint measurable subset of [0,∞) is (by de�nition of 1A)
mapped to zero.

The lemma suggests that we can identify each element A ∈ A with the functional 1A.

Choquet functionals can be viewed as an extension of the capacity ν from A to B+(A). The
problem of extending the Choquet integral from B+(A) to B(A) can be viewed as the problem
of how to extend the Choquet functionals from B+(A) to the entire space B(A). Possible
extensions depend on the conditions that we want it to satisfy. A natural property to require
is that the extended functional νc ∶ B(A) → R is translation invariant.

A
A∈A
1A

// A f∈B+(A)
(C) ∫Ω f dν

// B+(A) f∈B(A)
t.i. νc(f)

// B(A)

The symmetric Choquet integral is not translation invariant as pointed out in Example 4.18.
However, there exists a well-de�ned, translation-invariant extension of the Choquet integral to
B(A) given by

(C)∫ f dν = (C)∫ f+ dν − (C)∫ f− dν̃,(4.4)

where ν̃ is the dual capacity. The integral (4.4) is called asymmetric Choquet integral since
in general (C) ∫ (−f) dν ≠ (−1) ⋅ (C) ∫ f dν for f ∈ B(A). A more explicit expression can be
received by using the de�nitions of the applied objects as well as Proposition 4.12 to derive

−(C)∫
Ω
f− dν̃ = −(C)∫

∞

0
ν̃({−f ≥ s}) ds = −(C)∫

∞

0
ν(Ω) − ν({−f ≥ s}C) ds

= (C)∫
∞

0
ν({−f ≥ s}C) − ν(Ω) ds = (C)∫

∞

0
ν({−f < s}) − ν(Ω) ds

= (C)∫
∞

0
ν({f > −s}) − ν(Ω) ds = (C)∫

0

−∞
ν({f > t}) − ν(Ω) dt

= (C)∫
0

−∞
ν({f ≥ t}) − ν(Ω) dt
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with t ∶= −s.

The next proposition provides an explicit expression of the desired translation-invariant ex-
tension.

4.20 Proposition: Let (Ω,A, ν) be a measurable space and f ∈ B(A). A Choquet functional
νc ∶ B+(A) → R admits an unique translation invariant extension, given by

νc(f) = ∫
∞

0
ν({f ≥ t}) dt + ∫

0

−∞
ν({f ≥ t} − ν(Ω)) dt(4.5)

for each f ∈ B(A), where on the right we have two Riemann integrals.

Proof. Let νc ∶ B(A) → R be a functional that is t.i. and coincides with the Choquet integral
on B+(A). It su�ces to show that νc has the form

ν̂c(f) = ∫
∞

0
ν({f ≥ t}) dt + ∫

0

−∞
ν({f ≥ t} − ν(Ω)) dt.(4.6)

Take f ∈ B(A) and suppose that inff =∶ γ < 0. By translation invariance, νc(f − γ1Ω) =
νc(f) − γνc(1Ω). As f − γ1Ω belongs to B+(A), we can write

νc(f) = νc(f − γ) + γνc(1Ω)

= ∫
∞

0
ν({f − γ1Ω ≥ t}) dt + γν(Ω)

= ∫
∞

γ
ν({f ≥ τ}) dτ + γν(Ω)

= ∫
0

γ
ν({f ≥ τ}) dτ + ∫

∞

0
ν({f ≥ τ}) dτ − ∫

0

γ
ν(Ω) dτ

where the penultimate equality is due to the change of variable τ ∶= t + γ. As [ν({f ≥ τ}) −
ν(Ω)] = 0 for all τ ≤ γ, the following holds:

νc(f) = ∫
∞

0
ν({f ≥ τ}) dτ + ∫

0

−∞
ν({f ≥ τ}) − ν(Ω) dτ.

Finally, we can de�ne the general (asymmetric) Choquet integral.

4.21 De�nition: Let (Ω,A) be a measurable space, ν a capacity and f ∶ Ω→ R a A-measurable
function. The (asymmetric) Choquet integral of f with respect to ν is given by

(C)∫
Ω
fdν ∶= ∫

∞

0
ν({f ≥ t}) dt + ∫

0

−∞
ν({f ≥ t} − ν(Ω)) dt,(4.7)

where the integrals on the right of the equations are well-de�ned Riemann integrals.

4.4 Comonotonic Functionals
In general, a Choquet functional νc = (C) ∫Ω f dν on a measurable space (Ω,A, ν) is �in general�
not additive. That is, the equation

νc(f + g) = νc(f) + νc(g)

is in general not true. However, additivity in a restricted sense holds true if there is a certain
relation between f and g. This relation is called comonotonicity and is de�ned as follows.
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4.22 De�nition: (Comonotonic functions) Two real functions f, g ∶ Ω→ R are called comono-

tonic (short for 'commonly monotonic') if

[f(x1) − f(x2)][g(x1) − g(x2)] ≥ 0 for any x1, x2 ∈ Ω.

A class of functions C is said to be comonotonic if for every pair (f, g) ∈ C2 is comonotonic.

A pair of functions f, g is comonotonic, if either

� f(x1) ≤ f(x2) and g(x1) ≤ g(x2), or

� f(x1) ≥ f(x2) and g(x1) ≥ g(x2)
holds for all x1, x2 ∈ Ω. It is de�nitely not comonotonic if there are x1, x2 ∈ Ω, such that
f(x1) < f(x2) and g(x1) > g(x2). However, the negation of this characterization is also ne-
cessary and su�cient to characterize comonotonicity as stated in [Gra16]. That is, a pair of
function f, g is comonotonic if and only if there are no x1, x2 ∈ Ω, such that f(x1) < f(x2) and
g(x1) > g(x2). Please also refer to [MS91].

Grabisch [Gra16] interprets the actual de�nition of comonotonicity as follows:

Roughly speaking, two comonotonic functions have a similar pattern of variation,

however one should be careful that comonotonicity is in fact more demanding than

simply to be increasing and decreasing on the same domains.

The desired feature of comonotonic functions is that both functions have similar patterns with
respect to the set inclusion. Let us illustrate the de�nition of comonotonic functions with some
examples.

4.23 Example: a) Let f, g ∶ R → R be de�ned as noted in Figure 8. The pair of function
is not comonotonic on R as for x1 = −4 and x2 = 5, for example, the inequality of the
de�nition does not hold true, even though both functions are increasing and decreasing
on the same domain. Note that the function value f is at x1 = −4 smaller than at x2 = 5.
However, g is at x1 = −4 greater than at x2 = 5. This is only possible if f and g are not
comonotonic.
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x
2

x
<
0

2x
x
≥
0

x2x1

Figure 8: Graph of non-comonotonic pair of functions f (blue) and g (red)

b) Consider the real functions f(x) = ∣x∣ and g(x) = x2 with x1, x2 ∈ R as illustrated in
Figure 9. If x1 ≤ x2, then ∣x1∣ ≤ ∣x2∣ and x2

1 ≤ x2
2. Furthermore, f(x), g(x) ≥ 0 for all

34



−2 −1 0 1 2

0

1

2

3

4

x

f
(
x
)
=
x

2
an
d
g
(
x
)
=
∣x
∣

Figure 9: Graph of comonotonic pair of functions f (blue) and g (red)

x ∈ R. Hence, [f(x1) − f(x2)] ≥ 0 as well as [g(x1) − g(x2)] ≥ 0, which proves that f and
g are comonotonic.

c) Now, let us consider the real functions f(x) = x2 and g(x) = 1 ∀x ∈ R as sketched
in Figure 10. This pair of function is also comonotonic since g(x1) − g(x2) = 0 for all
x1, x2 ∈ R. Evidently, [f(x1) − f(x2)][g(x1) − g(x2)] ≥ 0 holds therefore for all real
x1, x2 ∈ R. In general, a constant function is comonotonic with any other function. A
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Figure 10: Graph of comonotonic pair of functions f (blue) and g (red)

direct consequence of this generalized example is, that the binary relation 'is comonotonic
with' is not transitive.

The following lemma is going to characterize comonotonicity by connecting this concept to
upper level sets and to the existence of non-decreasing functions.

4.24 Lemma: Let ν be a capacity on a measurable space (Ω,A). If f, g ∶ Ω → R, then the
following statements are equivalent.

(i) f and g are comonotonic;

(ii) There exist non-decreasing functions u, v ∶ R → R and a function h ∶ Ω → R such that
f = u ○ h and g = v ○ h.
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(iii) The collection {f ≥ t}t∈R ∪ {g ≥ t}t∈R is a chain.

Moreover, suppose now that Ω is �nite, i.e. ∣Ω∣ = n ∈ N. Then,
(iv) f = (f1, . . . , fn) and g = (g1, . . . , gn) are comonotonic if and only if there exists a per-

mutation σ on X such that fσ(1) ≤ . . . ≤ fσ(n) and gσ(1) ≤ . . . ≤ gσ(n).

Proof. (i) ⇒ (ii): If either f , g are constant the result holds trivially. We can therefore assume
that f is not constant. Choose any increasing function u on R and de�ne h ∶= u−1 ○ f . Then,
f = u ○ (u−1 ○ f) = id ○ f . Now, de�ne v ∶ ran(h) → R by v(h(x)) = g(x) for every x ∈ X.
We still have to show that v is non-decreasing on ran(h). To this end, take x1, x2 ∈ Ω such
that h(x1) > h(x2), which is possible because f is not constant and u is increasing. This is
equivalent to u−1(f(x1)) > u−1(f(x2)), which is in turn equivalent to f(x1) > f(x2). Since f, g
are comonotonic, it follows that g(x1) ≥ g(x2).

(ii) ⇒ (iii): Take t1, t2 ∈ R and consider the upper level sets {f ≥ t1} and {f ≥ t2}. We have

{f ≥ t1} = {u ○ h ≥ t1} = {h ≥ s1}

with s ∶= inf{u−1(t1)}. Similarly, {g ≥ t2} = {h ≥ s2} with s2 ∶= inf{v−1(t2)}. These two level
sets are then in inclusion relation, which proves the assertion.

(iii)⇒ (i): Suppose there exist x1, x2 ∈ Ω such that f(x1) < f(x2) and g(x1) > g(x2). Consider
the upper level sets A ∶= {f ≥ f(x2)} and B ∶= {g ≥ g(x1)}. Then, x1 ∈ B ∖A and x2 ∈ A ∖B,
however, it cannot be that A ⊆ B or B ⊆ A.

(iv): This is clear from the de�nition.

The following theorem shows that the integral of a pair of comonotonic functions is additive
in a restricted sense.

4.25 Theorem: Let f, g ∈ B(A) be a comonotonic pair of functions such that f + g ∈ B(A).
Then, for any corresponding capacity ν the Choquet integral is comonotonically additive, that
is,

(C)∫ f + g dν = (C)∫ f dν + (C)∫ g dν.(4.8)

Proof. Refer to [Den94] or [MM03], for instance.
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